by medium-pressure column chromatography (silica gel; hexane-methylene chloride-acetone (48:48:4)); (3) LiAlH₄ reduction of the separated diasteromeric urethanes to the levorotatory (α^{22}_{D} -11.07° (c 3.63, CHCl₃)) and dextrorotatory (α^{22}_{D} +11.13° (c 1.77, CHCl₃)) alcohols **5**, respectively.

Pyridinium chlorochromate oxidation¹³ of the levorotatory alcohol 5 in methylene chloride at room temperature vielded the aldehyde 6^7 (¹H NMR (CDCl₃) δ 1.11 (3 H, d, J = 7 Hz), 1.32 (3 H, d, J = 7 Hz), 3.28 (3 H, s), 9.41 (1 H, d, J = 1.8Hz)) in 88% yield. Condensation of 6 in THF at -78 °C to -50 °C with the phosphonate anion prepared from $(MeO)_2P(O)CH(CH_3)CO_2CH_3$ gave exclusively¹⁴ the cis ester 7^7 (¹H NMR (CDCl₃) δ 1.05 (3 H, d, J = 7 Hz), 1.28 (3 H, d, J = 7 Hz), 1.85 (3 H, d, J = 1.2 Hz), 3.40 (3 H, s), 3.65 (3 H, s), 5.76 (1 H, dq, J = 10, 1.2 Hz)) in 73% yield. Hydride reduction (LiAlH₄, Et₂O, RT), followed by hydroboration ((1) B₂H₆, THF, 0 °C; (2) H₂O₂, aqueous 10% KOH-THF, RT), afforded the alcohol $\mathbf{8}^7$ (¹H NMR (CDCl₃) δ 1.05 (6 H, d, J = 7 Hz), 1.33 (3 H, d, J = 7 Hz), 3.46 (3 H, s)) in 80% yield along with a small amount of its diastereomer in a ratio of 12:1. Based on the aforementioned reason (note the geometry of the olefinic bond), the structure 8 was tentatively assigned to the major product, which was later confirmed by comparison of 12 with the authentic sample prepared by an alternative route.¹⁵ The alcohol **8** was converted to the methoxymethyl benzyl ether 9^7 (¹H NMR (CDCl₃) δ 1.00 (3 H, d, J = 7 Hz), 1.06 (3 H, d, J = 7 Hz), 1.25 (3 H, d, J = 7 Hz), 3.05 (3 H, s),3.35 (3 H, s)) in 2 steps ((1) BrCH₂OCH₃, (CH₃)₂NC₆H₅, CH_2Cl_2 , 0 °C; (2) $C_6H_5CH_2Br$, KH, DMF-THF (1:4), 0 °C) in 68% overall yield. Ozonization of 9 (O₃, CH₃OH, -78 °C), followed by diazomethane esterification, gave the ester 10^7 (¹H NMR (CDCl₃) δ 0.94 (3 H, d, J = 7 Hz), 1.05 (3 H, d, J = 7 Hz), 1.13 (3 H, d, J = 7 Hz), 3.25 (3 H, s), 3.35 (3 H, s), 3.67 $(3 H, s); \alpha^{22}D + 32.5^{\circ} (c 1.36, CHCl_3))$ in 55% overall yield. Acid treatment of 10 (concentrated HCl-CH₃OH (1:150), reflux) yielded the alcohol 11⁷ (¹H NMR (CDCl₃) δ 0.98 (6 H, d, J = 7 Hz), 1.13 (3 H, d, J = 7 Hz), 3.25 (3 H, s), 3.68 $(3 \text{ H}, \text{s}); \alpha^{22}\text{D} + 23.6^{\circ} (c \ 1.35, \text{CHCl}_3))$ in 94% yield. Pyridinium chlorochromate oxidation of **11** furnished the unstable aldehyde $12^{7,15,17}$ (¹H NMR (CDCl₃) δ 0.93 (3 H, d, J = 7 Hz), 1.11 (3 H, d, J = 7 Hz), 1.15 (3 H, d, J = 7 Hz), 3.26 (3 H, s), 3.70(3 H, s), 4.07(1 H, dd, J = 6, 3 Hz), 4.57(2 H, s), 9.77 (1 H, d, J = 2 Hz); α^{22}_{D} +74.2° (c 0.91, CHCl₃)) in \sim 95% yield.

Acknowledgment. We are appreciative of the efforts of Drs. Tatsumi Yamazaki and Donald S. Karanewsky in the early stages of this synthesis. Financial assistance from National Institutes of Health, National Science Foundation, and Hoffmann-La Roche Inc. is gratefully acknowledged.

References and Notes

- Part 4 of the series Synthetic Studies on Polyether Antibiotics. For part 3, see T. Nakata and Y. Kishi, *Tetrahedron Lett.*, 2745 (1978).
 A. Agtarap, J. W. Chamberlin, M. Pinkerton, and L. Steinrauf, *J. Am. Chem.*
- A. Agtarap, J. W. Chamberlin, M. Pinkerton, and L. Steinrauf, J. Am. Chem. Soc., 89, 5737 (1967); M. Pinkerton and L. K. Steinrauf, J. Mol. Biol., 49, 533 (1970); M. E. Haney, Jr., and M. M. Hoehn, Antimicrob. Agents Chemother., 349 (1967); W. M. Stark, N. G. Knox, and J. E. Westhead, *ibid.*, 353 (1967); A. Agtarap and J. W. Chamberlin, *ibid.*, 359 (1967); M. Gorman, J. W. Chamberlin, and R. L. Hamill, *ibid.*, 363 (1967); R. F. Shumard and M. E. Callender, *ibid.*, 369 (1967); W. K. Lutz, F. K. Winkler, and J. D. Dunitz, *Heiv. Chim. Acta*, 54, 1103 (1971).
- (3) Reviews on polyether antibiotics: J. W. Westley, Adv. Appl. Microbiol., 22, 177 (1977); B. C. Pressman, Annu. Rev. Biochem., 45, 501 (1976); J. W. Westley, Annu. Rep. Med. Chem., 10, 246 (1975).
 (4) T. Fukuyama, C.-L. J. Wang, and Y. Kishi, J. Am. Chem. Soc., following
- (4) T. Fukuyama, C.-L. J. Wang, and Y. Kishi, J. Am. Chem. Soc., following paper in this issue. (5) T. Fukuyama, K. Akasaka, D. S. Karanewsky, C.-L. J. Wang, G. Schmid.
- (5) T. Fukuyama, K. Akasaka, D. S. Karanewsky, C.-L. J. Wang, G. Schmid, and Y. Kishi, J. Am. Chem. Soc., accompanying paper in this issue.
- (6) We have studied several routes to 2-(2-furyl)propionaldehyde including the known method (U. Schmidt, J. Gombos, E. Haslinger, and H. Zak, *Chem. Ber.*, 109, 2628 (1976)), and found that the following sequence of reactions is most practical for preparation of a large quantity of this substance: (1) methylation (*n*-BuLi (1.2 equiv), Mel, THF, -78 °C to RT) of (2-furyl)acetonitrile (K. Yu. Novitskii, Kh. Gresl, and Yu. K. Yur'ev, *Khim. Geterotsiki. Soedin.*, 829 (1966)); (2) hydrolysis (KOH, aqueous CH₃OH; reflux); (3)

reduction (LiAIH₄, Et₂O, 0 $^{\circ}$ C); (4) oxidation (CrO₃PyHCl, CH₂Cl₂, RT). (7) Satisfactory spectroscopic data (mass spectrum, ¹H NMR, IR, etc.) were

- obtained for this substance.
 (8) T. Matsumoto, Y. Hosoda, K. Mori, and K. Fukui observed a highly stereospecific hydroboration on a very similar system to 3 (*Bull. Chem. Soc. Jpn.*, 45, 3156 (1972)).
- (9) R. W. Kilb, C. C. Lin, and E. B. Wilson, Jr., J. Chem. Phys., 26, 1695 (1957).
- (10) D. R. Herschbach and L. C. Krisher, J. Chem. Phys., 28, 728 (1958).
- (11) A. A. Bothner-By, C. Naar-Colin, and H. Guenther, J. Am. Chem. Soc., 84, 2748 (1962).
- (12) For example, see E. L. Eliel, N. L. Allinger, S. J. Angyal, and G. A. Morrison, "Conformational Analysis", Interscience Publishers, New York, 1965, p 19 ff.
- (13) E. J. Corey and J. W. Suggs, Tetrahedron Lett., 2647 (1975).
- (14) The amount of the corresponding trans ester, if any, should be <2%. Related to the synthesis of the polyether and some other antibiotics, we have studied the Horner-Emmons modification of the Wittig reaction to optimize the formation of cis- α , β -unsaturated esters like 7, and realized that the ratio of the cis and trans esters is sensitive to the structure of the phosphonate anion, solvent, and reaction temperature: G. Schmid, Y. Oikawa, and Y. Kishi, unpublished results. Attempted application of the oxido yilde method (see E. J. Corey and H. Yamamoto, *J. Am. Chem. Soc.*, **92**, 226, (1970)) for the synthesis of cis-allylic alcohol (cf. 7) directly from **6** was not successful.
- (15) We first investigated an alternative route to 12 involving aldol reaction of 6 with the zinc enolate of 2-methyl-2-hydroxy-3-pentanone. Thus, 12 was synthesized from 6 in eight steps ((1) aldol reaction; (2) LiAlH₄, Et₂O, 0 °C; (3) NalO₄, aqueous CH₃OH, RT; (4) CH(OCH₃)₃–CH₃OH, CSA, RT; (5) C₆H₅CH₂Br, KH, DMF–THF (1:4), 0 °C; (6) O₃, CH₃OH, -78 °C; (7) CH₂N₂, Et₂O, 0 °C; (8) aqueous ACOH, RT) with 13% overall yield. A disadvantage of this sequence is the fact that the best stereospecificity of the aldol reaction was 1.8:1 in favoring the desired product. The stereochemistry of the major aldol was confirmed by transforming it to the lactonic ester i, ¹⁶

one of the degradation products of monensin, in three steps ((1) O_3 , CH₃OH, -78 °C; (2) H_5IO_6 , dioxane, RT, 24 h; (3) CH₂N₂, Et₂O, 0 °C).

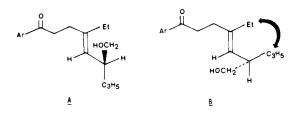
- (16) We are indebted to Dr. Chamberlin, Eli Lilly & Co., for a sample of the lactonic ester i.
- (17) We have recently developed a method to convert the lactonic ester i (see ref 15 and 16) to 12 in 11 steps: T. Fukuyama, K. Akasaka, and Y. Kishi, unpublished results.

G. Schmid, T. Fukuyama, K. Akasaka, Y. Kishi*

Department of Chemistry, Harvard University Cambridge, Massachusetts 02138 Received September 22, 1978

Total Synthesis of Monensin. 2. Stereocontrolled Synthesis of the Right Half of Monensin¹

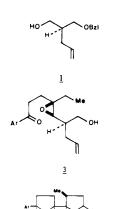
Sir:

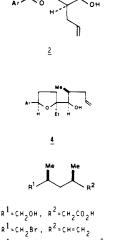

Here, continuing from the preceding communication on the synthesis of the left half of monensin, we describe the synthesis of the right half of the antibiotic.

Monobenzylation of 2-allyl-1,3-propanediol² was efficiently carried out in two steps ((1) C₆H₅ CHO, CSA, C₆H₆, azeotropic conditions; (2) LiAlH₄-AlCl₃ (1:4), Et₂O, RT) in 93% overall yield. Optical resolution of the monobenzyl ether 1^3 was achieved in a three-step sequence: (1) (+)-1-C₁₀H₇CH(CH₃)N=C=O, Et₃N, RT; (2) separation of the resultant diastereomeric urethanes by medium-pressure column chromatography (silica gel; hexane-methylene chloride-ether (10:10:1)), (3) LiAlH₄ reduction of the separated diastereometric urethanes to the levorotatory $(\alpha^{22}D - 12.1^{\circ})$ (c 0.68, CHCl₃)) and dextrorotatory (α^{22}_{D} +13.6° (c 0.92, $CHCl_3$) monobenzyl ethers 1, respectively. The S configuration was assigned to the levorotatory alcohol 1 based on the following experiment: (-)-1 was converted to (-)-2-methylpentanoic acid $(\alpha^{22}D - 21.4^{\circ})$ in four steps ((1) MsCl, Py, 0 °C; (2) LiAlH₄, Et₂O, RT; (3) H₂, 10% Pd/C, CH₃OH, RT; (4) Jones oxidation), while the rotation of (S)-2-methylpen-

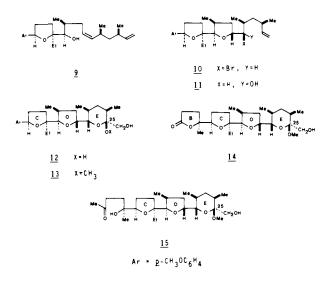
Communications to the Editor

tanoic acid is known as α_D +21.4°.4 The levorotatory monobenzyl ether 1 was converted to the *p*-methoxyacetophenone derivative 2^3 (¹H NMR (CDCl₃) δ 1.01 (3 H, t, J = 7 Hz), 3.85 (3 H, s); α^{22} +4.0° (c 0.20, CHCl₃)) in 31% overall yield in eight steps ((1) CrO₃PyHCl,⁵ CH₂Cl₂, RT; (2) $CH_3CH_2C(=CH_2)MgBr$, THF, 0 °C; (3) $CH_3C(OEt)_3$, CH₃CH₂CO₂H, 140 °C; (4) LiAlH₄, Et₂O, RT; (5) Cr- $O_3PyHCl, CH_2Cl_2, RT;$ (6) p-MeOC₆H₄MgBr, Et₂O, 0 °C; (7) Jones oxidation; (8) BCl₃, CH₂Cl₂, 0 °C). The dextrorotatory monobenzyl ether 1 was also transformed to 2 with the same absolute configuration as that derived from the levorotatory monobenzyl ether 1 in 30% overall yield in 10 steps ((1) BrCH₂OCH₃, (CH₃)₂NC₆H₅, CH₂Cl₂, RT; (2) Li, liquid NH_3 ; (3-9) follow the steps 1-7 for the levorotatory series; (10) concentrated HCl, CH₃OH, 60 °C)—note the symmetry element of 1.


We anticipated that epoxidation of 2 should afford the epoxide 3 as the major product, since the transition state A would experience less steric hindrance than the alternative transition state B (note the arrow in B), assuming that this epoxidation involves first complexation of an oxidant with the hydroxyl group of 2. Indeed, *m*-chloroperbenzoic acid in methylene


chloride-aqueous sodium bicarbonate (two phase) at room temperature gave almost quantitatively a single,⁶ unstable⁷ epoxide **3** (¹H NMR (CDCl₃) δ 1.05 (3 H, t, J = 7 Hz), 3.90 (3 H, s)). After tosylation (TsCl, Py, 0 °C), **3** was stereospecifically converted to the tetrahydrofuran **4** (¹H NMR (CDCl₃) δ 0.94 (3 H, d, J = 7 Hz), 0.95 (3 H, t, J = 7 Hz), 3.68 (3 H, s); α^{22}_{D} +18.8° (c 1.20, CHCl₃)) by the method ((1) LiAlH₄, Et₂O, 0 °C; (2) CSA, CH₂Cl₂, RT) recently developed in our laboratory.⁸ The best ratio of **4** and its diastereomer was 7:2.⁹ Periodate-osmium tetroxide oxidation of **4** in aqueous dioxane at room temperature yielded the lactol **5** (¹H NMR (CDCl₃) δ 1.00 (3 H, t, J = 7 Hz), 1.01 (3 H, d, J = 7 Hz), 3.76 (3 H, s); α^{22}_{D} +19.2° (c 2.62, CHCl₃)) in 36% overall yield from **3**.

Baeyer-Villiger oxidation of cis-3,5-dimethylcyclohexanone,¹⁰ followed by aqueous potassium hydroxide workup, gave the hydroxy acid 6.3 Optical resolution of 6 was achieved by fractional crystallization (eight times from CHCl₃-Et₂O) of its (+)- α -methylbenzylamine salt.³ The 3R configuration was tentatively assigned to the dextrorotatory hydroxy acid 6, since (+)-6 yielded (+)-3,5-dimethylhexan-1-ol (α^{22} _D +8.65° (c 0.45, CHCl₃)) in three steps ((1) CH₂N₂, Et₂O, 0 °C; (2) MsCl, Py, 0 °C; (3) LiAlH₄, Et₂O, RT), while (R)-(+)-3,7-dimethyloctan-1-ol is known to have α_D +4.20°.¹¹ The dextrorotatory hydroxy acid 6 was transformed to the bromide 7^{3} (¹H NMR (CDCl₃) δ 1.03 (6 H, d, J = 7 Hz); α^{22} _D -15.0° (c 0.71, CHCl₃)) in 10 steps ((1) H₂SO₄, EtOH, reflux; (2) BrCH₂OCH₃, (CH₃)₂NC₆H₅, CH₂Cl₂, RT; (3) LiAlH₄, $Et_2O, RT; (4) MsCl, Py, 0 °C; (5) C_6H_5SNa, DMF, RT; (6)$ CH₃CO₃H, AcONa, AcOH-CH₂Cl₂, 0 °C; (7) Δ, CaCO₃, decaline; (8) concentrated HCl, EtOH, reflux; (9) MsCl, Py, 0 °C; (10) LiBr, DMF, 100 °C). Treatment of 7 with triphenylphosphine in DMF at 120 °C gave the phosphonium salt 8^{3} (¹H NMR (CDCl₃) δ 0.83 (3 H, d, J = 7 Hz), 1.02 (3 H, br d, J = 7 Hz)). The overall yield from 6 to 8 was 36%.


Wittig reaction of 5 and 8 (Me₂SO⁻Na⁺, Me₂SO, RT) afforded the cis olefin 9³ (¹H NMR (CDCl₃) δ 0.94 (6 H, d,

5

B R¹=CH₂P⁺(C₆H₅)₃Br[−], R²=CH=CH₂

J = 7 Hz), 0.95 (3 H, d, J = 7 Hz), 3.79 (3 H, s); $\alpha^{22}_D + 10.3^{\circ}$ (c 0.71, CHCl₃)) in 78% yield along with a small amount of the corresponding trans olefin (<2% yield). NBS bromination¹² of **9** in acetonitrile at room temperature gave a single bromide **10**³ (¹H NMR (CDCl₃) δ 0.98 (6 H, d, J = 7 Hz), 1.00 (3 H, d, J = 7 Hz), 1.03 (3 H, t, J = 7 Hz), 3.78 (3 H, s); $\alpha^{22}_D + 1.3^{\circ}$ (c 0.38, CHCl₃)) in 57% yield. The structure **10** was assigned for the product, based on our extensive studies in the lasalocid A synthesis.¹³ Treatment of **10** with superoxide anion in Me₂SO containing crown ether¹⁴ gave the alcohol **11**³ (¹H NMR (CDCl₃) δ 0.95 (3 H, d, J = 7 Hz), 0.98 (3 H, t, J= 7 Hz), 1.02 (6 H, d, J = 7 Hz), 3.78 (3 H, s); $\alpha^{22}_D + 19.5^{\circ}$ (c 0.36, CHCl₃)) in 47% yield. Byproducts of this reaction were olefins formed from elimination of hydrogen bromide.

Functionalization of the vinyl group of **11** was accomplished in 53% overall yield by protection of the secondary alcoholic group as its trichloroacetate (Cl₃CCOCl, Py, 0 °C), osmylation (OsO₄, Py-THF, RT), monobenzoylation (C₆H₅COCl, Py-CH₂Cl₂, RT), Jones oxidation, and then hydrolysis of the trichloroacetyl and benzoyl groups (NaOMe, CH₃OH, RT). As a single hemiketal **12**³ (¹H NMR (CDCl₃) δ 3.78 (3 H, s); α^{22}_{D} +74.7° (*c* 0.17, CHCl₃)) was produced on the base hydrolysis, the stereochemistry at C(25)¹⁵ was concluded as indicated—note the stereochemistry of this center of monensin. The hemiketal group in **12** was protected as its methyl ketal **13**³ (¹H NMR (CDCl₃) δ 3.26 (3 H, s), 3.76 (3 H, s); α^{22}_{D}

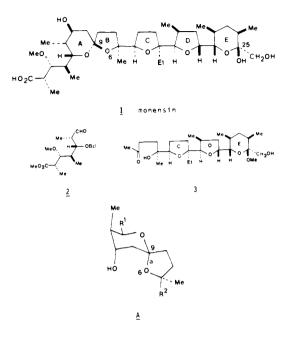
 $+85.5^{\circ}$ (c 0.18, CHCl₃)) under the standard conditions (CH(OCH₃)₃-CH₃OH, CSA, CH₂Cl₂, RT) quantitatively.

Transformation of 13 to the lactone 14³ (¹H NMR (CDCl₃) δ 1.34 (3 H, s), 3.26 (3 H, s), 3.98 (1 H, d, J = 4 Hz); IR (CHCl₃) 1760 cm⁻¹; α^{22} _D +43.6° (*c* 1.69, CHCl₃)) was accomplished in seven steps ((1) Li, liquid NH₃, EtOH; (2) CH(OCH₃)₃-CH₃OH, CSA, CH₂Cl₂, RT; (3) O₃, CH₃OH, -78 °C; (4) MgBr₂, wet CH₂Cl₂, RT; (5) CH₃MgBr, Et₂O, RT; (6) O₃, CH₃OH, -78 °C; (7) concentrated HCl, CH₃OH, RT) in 22% overall yield. A few of these steps require a comment. First, magnesium bromide in wet methylene chloride (step 4) was found most satisfactory to form the enol ether of the β -ketoaldehyde. Second, highly stereospecific addition of a Grignard reagent to a ketonic group adjacent to a tetrahydrofuran (step 5) was demonstrated in our total synthesis of lasalocid A.¹³ In this particular case 14 was the only product detected by NMR and TLC analysis. The structure of 14 was concluded from the following transformation; acid treatment of 14 (CSA, wet ether, RT), followed by periodate oxidation (NaIO₄, aqueous CH₃OH, 0 °C), gave the dilactone (i.e., the ring E^{15} in the structure **14** is the δ -lactone), which was found to be identical with the authentic dilactone,^{16,17} one of the degradation products of monensin, by comparison of spectroscopic (NMR, IR, α_D) and TLC data. Treatment of 14 with methyllithium in THF at -78 °C afforded the methyl ketone **15**³ (¹H NMR (CDCl₃) δ 1.13 (3 H, s), 2.15 (3 H, s), 3.25 (3 H, s), 4.13 (1 H, d, J = 4 Hz); IR (CHCl₃) 1715 cm⁻¹; α^{22} _D +65.1° (c 1.78, CHCl₃)) almost quantitatively.

Acknowledgment. Financial assistance from National Institutes of Health, National Science Foundation, and Hoffmann-La Roche Inc. is gratefully acknowledged.

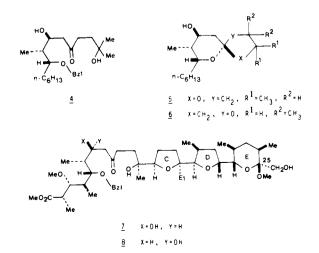
References and Notes

- (1) Part 5 of the series Synthetic Studies on Polyether Antibiotics. For part 4, see G. Schmid, T. Fukuyama, K. Akasaka, and Y. Kishi, J. Am. Chem. Soc., preceding paper in this issue.
- (2) B. K. Wasson, C. H. Gleson, I. Levi, J. M. Parker, L. M. Thompson, and C. H. Yates, *Can. J. Chem.*, **39**, 923 (1961).
- (3) Satisfactory spectroscopic data (mass spectrum, ¹H NMR, IR, etc.) were obtained for this substance.
- (4) P. A. Levene and A. Rothen, J. Org. Chem., 1, 76 (1936).
 (5) E. J. Corey and J. W. Suggs, Tetrahedron Lett., 2647 (1975).
 (6) Contamination of the minor epoxide, if any, should be <5%, judged from
- the results of the following transformations.
- (7) This type of epoxy ketone is known to rearrange to a ketal under acidic conditions. For an example, see W. K. Anderson and T. Veysoglu, J. Org. Chem., 38, 2267 (1973).
- T. Fukuyama, B. Vranesic, D. P. Negri, and Y. Kishi, Tetrahedron Lett., 2741 (8) (1978)
- (9) The best conditions found in the model series (see ref 8) could not be applied for this case, since the tosyl group was not reduced under these conditions. Studies to improve the stereospecificity of this step are in progress
- (10) J. von Braun and W. Haensel, Chem. Ber., 59, 1999 (1926); N. L. Allinger, J. Am. Chem. Soc., 81, 232 (1959). (11) N. Cohen, W. F. Eichel, R. J. Lopresti, C. Neukom, and G. Saucy, J. Org.
- Chem., 41, 3505 (1976).
- The bishomoallylic alcohol 9 was not epoxidized under the conditions we used for the synthesis of lasalocid A.^{8,13}
 T. Nakata, G. Schmid, B. Vranesic, M. Okigawa, T. Smith-Palmer, and Y.
- Kishi, J. Am. Chem. Soc., 100, 2933 (1978); T. Nakata and Y. Kishi, Tetrahedron Lett., 2745 (1978).
- (14) E. J. Corey, K. C. Nicolaou, M. Shibasaki, Y. Machida, and C. S. Shiner, *Tetrahedron Lett.*, 3183 (1975).
- (15) The numbering corresponds to that of monensin (see ref 16).
 (16) A. Agtarap, J. W. Chamberlin, M. Pinkerton, and L. Steinrauf, J. Am. Chem.
- Soc., 89, 5737 (1967).
- (17) We are indebted to Dr. Chamberlin, Eli Lilly & Co., and Dr. Westley, Hoffmann-La Roche Inc., for samples of natural monensin. The authentic sample of the dilactone was prepared from natural monensin by following the Lilly procedure. We thank Dr. Chamberlin for information on the details of this experiment.
- (18) We have recently developed a method to convert the dilactone (see ref 16 and 17) to 15 in 13 steps: T. Fukuyama, K. Akasaka, and Y. Kishi, unpublished results.


T. Fukuyama, C.-L. J. Wang, Y. Kishi*

Department of Chemistry, Harvard University Cambridge, Massachusetts 02138 Received September 22, 1978

Total Synthesis of Monensin. 3. Stereocontrolled Total Synthesis of Monensin¹


Sir:

Having completed the synthesis of the left and right halves 2 and 3 of monensin (1), we now need to develop a method of constructing the spiro ketal moiety of the antibiotic. We an-

ticipated that the asymmetric center at the $C(9)^2$ position should stereospecifically be introduced by intramolecular ketalization of the corresponding dihydroxy ketone, because the configuration and conformation around this center of monensin (1) has been shown by X-ray analysis³ as A, in which the $C(9)-O(6)^2$ bond takes the axial position with respect to the tetrahydropyran ring. Therefore, this configuration must be thermodynamically more stable than the alternative one owing to the anomeric effect well known in carbohydrate chemistry.

The proposed intramolecular ketalization, particularly its stereochemistry outcome, was investigated on the model compound 4.^{4,5} Hydrogenolysis of 4 (1 atm of H₂, 10% Pd/C, CH₃OH-AcOH (95:5), RT) yielded an \sim 1:1 mixture of spiro ketals 5⁵ and 6⁵ (Merck silica gel plate (0.25 mm), acetonehexane (3:7); R_f 0.72 and 0.48, respectively). When this mixture was equilibrated with a catalytic amount of camphorsulfonic acid in methylene chloride at room temperature,

© 1979 American Chemical Society